A NOTE ON VALUES OF NONCOMMUTATIVE POLYNOMIALS

MATEJ BREŠAR1 AND IGOR KLEP2

Abstract. We find a class of algebras A satisfying the following property: for every nontrivial noncommutative polynomial $f(X_1, \ldots, X_n)$, the linear span of all its values $f(a_1, \ldots, a_n)$, $a_i \in A$, equals A. This class includes the algebras of all bounded and all compact operators on an infinite dimensional Hilbert space.

1. Introduction

Starting with Helton's seminal paper [Hel] there has been considerable interest over the last years in values of noncommuting polynomials on matrix algebras. In one of the papers in this area the second author and Schweighofer [KS] showed that Connes’ embedding conjecture is equivalent to a certain algebraic assertion which involves the trace of polynomial values on matrices. This has motivated us [BK] to consider the linear span of values of a noncommutative polynomial f on the matrix algebra $M_d(F)$; here, F is a field with $\text{char}(F) = 0$. It turns out [BK Theorem 4.5] that this span can be either:

1. $\{0\}$;
2. the set of all scalar matrices;
3. the set of all trace zero matrices; or
4. the whole algebra $M_d(F)$.

From the precise statement of this theorem it also follows that if $2d > \deg f$, then (1) and (2) do not occur and (3) occurs only when f is a sum of commutators.

What to expect in infinite dimensional analogues of $M_d(F)$? More specifically, let H be infinite dimensional Hilbert space, and let $B(H)$ and $K(H)$ denote the algebras of all bounded and compact linear operators on H, respectively. What is the linear span of polynomial values in $B(H)$ and $K(H)$? A very special (but decisive, as we shall see) case of this question was settled by Halmos [Hal] and Pearcy and Topping [PT] (see also Anderson [And]) a long time ago: every operator in $B(H)$ and $K(H)$, respectively, is a sum of commutators. That is, the linear span of values of the polynomial $X_1X_2 - X_2X_1$ on $B(H)$ and $K(H)$ is the whole $B(H)$ and $K(H)$, respectively. We will prove that the same is true for every nonconstant polynomial. This result will be derived as a corollary of our main theorem which presents a class of algebras with the property that the span of values of “almost” every polynomial is equal to the whole algebra.

2. Results

By $F(X)$ we denote the free algebra over a field F generated by $X = \{X_1, X_2, \ldots\}$, i.e., the algebra of all noncommutative polynomials in X. Let $f = f(X_1, \ldots, X_n) \in F(X)$. We say that f is homogeneous in the variable X_i if all monomials of f have

\footnote{Date: 09 September 2009.}
\footnote{2000 Mathematics Subject Classification. 08B20, 16R99, 47L30.}
\footnote{Key words and phrases. Noncommutative polynomial, Lie ideal, Hilbert space, bounded operator, compact operator.}
\footnote{1Supported by the Slovenian Research Agency (program No. P1-0288).}
\footnote{2Supported by the Slovenian Research Agency (program No. P1-0222).}
the same degree in X_i. If this degree is 1, then we say that f is linear in X_1. If f is linear in every variable X_i, $1 \leq i \leq n$, then we say that f is multilinear.

Let A be an algebra over \mathbb{F}. By $f(A)$ we denote the set of all values $f(a_1, \ldots, a_n)$ with $a_i \in A$, $i = 1, \ldots, n$. Recall that $f = f(X_1, \ldots, X_n) \in \mathbb{F}[X]$ is said to be an identity of A if $f(A) = \{0\}$. If $f(A)$ is contained in the center of A, but f is not an identity of A, then f is said to be a central polynomial of A. By span $f(A)$ we denote the linear span of $f(A)$. We are interested in the question when does span $f(A) = A$ hold.

For the proof of our main theorem three rather elementary lemmas will be needed. The first and the simplest one is a slightly simplified version of [BK, Lemma 2.2]. Its proof is based on the standard Vandermonde argument.

Lemma 2.1. Let V be a vector space over an infinite field \mathbb{F}, and let U be a subspace. Suppose that $c_0, c_1, \ldots, c_n \in V$ are such that $\sum_{i=0}^n \lambda_i c_i \in U$ for all $\lambda \in \mathbb{F}$. Then each $c_i \in U$.

Recall that a vector subspace L of A is said to be a Lie ideal of A if $[\ell, a] \in L$ for all $\ell \in L$ and $a \in A$; here, $[u, v] = uv - vu$. For a recent treatise of Lie ideals from an algebraic as well as functional analytic viewpoint we refer the reader to [BKS].

Our second lemma is a special case of [BK, Theorem 2.3].

Lemma 2.2. Let A be an algebra over an infinite field \mathbb{F}, and let $f \in \mathbb{F}[X]$. Then span $f(A)$ is a Lie ideal of A.

Every vector subspace of the center of A is obviously a Lie ideal of A. Lie ideals that are not contained in the center are called noncentral. The third lemma follows from an old result of Herstein [Her, Theorem 1.2].

Lemma 2.3. Let S be a simple algebra over a field \mathbb{F} with char(\mathbb{F}) $\neq 2$. If M is both a noncentral Lie ideal of S and a subalgebra of S, then $M = S$.

We are now in a position to prove our main result.

Theorem 2.4. Let S and B be algebras over a field \mathbb{F} with char(\mathbb{F}) $= 0$, and let $A = S \otimes B$. Suppose that S is simple, and suppose that B satisfies

(a) every element in B is a sum of commutators; and

(b) for each $n \geq 1$, every element in B is a linear combination of elements b^n, $b \in B$.

If $f \in \mathbb{F}[X]$ is neither an identity nor a central polynomial of S, then

$$\text{span } f(A) = A.$$

Proof. Let $f = f(X_1, \ldots, X_n)$. Let us write $f = g_i + h_i$ where g_i is a sum of all monomials of f in which X_i appears and h_i is a sum of all monomials of f in which X_i does not appear. Thus, $h_i = h_i(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n)$ and hence

$$h_i(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n) = f(a_1, \ldots, a_{i-1}, 0, a_{i+1}, \ldots, a_n)$$

for all $a_i \in A$. Therefore span $h_i(A) \subseteq \text{span } f(A)$, which clearly implies span $g_i(A) \subseteq$ span $f(A)$. At least one of g_i and h_i is neither an identity nor a central polynomial of S. Therefore there is no loss of generality in assuming that either X_i appears in every monomial of f or f does not involve X_i at all. Since f cannot be a constant polynomial and hence it must involve some of the X_i’s, we may assume, again without loss of generality, that each monomial of f involves all X_i, $i = 1, \ldots, n$.

Next we claim that there is no loss of generality in assuming that f is homogeneous in X_1. Write $f = f_1 + \ldots + f_m$, where f_i is the sum of all monomials of f
that have degree \(i \) in \(X_1 \). Note that
\[
f(\lambda a_1, a_2, \ldots, a_n) = \sum_{i=1}^m \lambda^i f_i(a_1, \ldots, a_n) \in \text{span } f(A)
\]
for all \(\lambda \in \mathbb{F} \) and all \(a_i \in A \), so \(f_i(a_1, \ldots, a_n) \in \text{span } f(A) \) by Lemma 2.1. Thus, \(\text{span } f_i(A) \subseteq \text{span } f(A) \). At least one \(f_i \) is neither an identity nor a central polynomial of \(S \). Therefore it suffices to prove the theorem for \(f_i \). This proves our claim.

Let us now show that there is no loss of generality in assuming that \(f \) is linear in \(X_1 \). If \(\deg_{X_1} f > 1 \), we apply the multilinearization process to \(f \), i.e., we introduce a new polynomial \(\Delta_{1,n+1} f = f'(X_1, \ldots, X_n, X_{n+1}) \):
\[
f' = f(X_1 + X_{n+1}, X_2, \ldots, X_n) - f(X_1, X_2, \ldots, X_n) - f(X_{n+1}, X_2, \ldots, X_n).
\]
This reduces the degree in \(X_1 \) by one. Clearly, \(\text{span } f'(A) \subseteq \text{span } f(A) \). Observe that \(f \) can be retrieved from \(f' \) by resubstituting \(X_{n+1} \mapsto X_1 \), more exactly
\[
(2^{\deg_{X_1}} f - 2)f = f'(X_1, \ldots, X_n, X_1).
\]
Hence \(f' \) is not an identity nor a central polynomial of \(S \). Note however that \(f' \) is not necessarily homogeneous in \(X_1 \), but for all its homogeneous components \(f'_j \) we have \(\text{span } f'_j(A) \subseteq \text{span } f'(A) \); one can check this by using Lemma 2.1 like in the previous paragraph. At least one of these components, say \(f'_j \), is not an identity nor a central polynomial of \(S \). Thus we restrict our attention to \(f'_j \). If necessary, we continue applying \(\Delta_{1,n} \) and after a finite number of steps we obtain a polynomial \(\Delta f \) linear in \(X_1 \), which is neither an identity nor a central polynomial of \(S \), and satisfies \(\text{span } \Delta f(A) \subseteq \text{span } f(A) \). Hence we may assume \(f \) is linear in \(X_1 \).

Repeating the same argument with respect to other variables we finally see that without loss of generality we may assume that \(f \) is multilinear.

Set \(L = \text{span } f(A) \) and \(M = \{ m \in S \mid m \otimes B \subseteq L \} \). By Lemma 2.2 \(L \) is a Lie ideal of \(A \). Therefore \([m, s] \otimes b^2 = [m \otimes b, s \otimes b] \in L \) for all \(m \in M \), \(b \in B \), \(s \in S \). Using (b) it follows that \([m, s] \in M \). Therefore \(M \) is a Lie ideal of \(S \). Pick \(s_1, \ldots, s_n \in S \) such that \(s_0 = f(s_1, \ldots, s_n) \) does not lie in the center of \(S \). For every \(b \in B \) we have
\[
s_0 \otimes b^n = f(s_1 \otimes b, s_2 \otimes b, \ldots, s_n \otimes b) \in L.
\]
In view of (b) this yields \(s_0 \in M \). Accordingly, \(M \) is a noncentral Lie ideal of \(S \). Next, given \(m \in M \) and \(b, b' \in B \), we have
\[
m^2 \otimes [b, b'] = [m \otimes b, m \otimes b'] \in L.
\]
By (a), this gives \(m^2 \in M \). From
\[
m_1 m_2 = \frac{1}{2} (m_1 m_2 + m_1 + m_2)^2 - m_1^2 - m_2^2
\]
it now follows that \(M \) is a subalgebra of \(S \). Using Lemma 2.3 we now conclude that \(M = S \), i.e., \(A = S \otimes B \subseteq L \subseteq A \).

It is easy to see that (b) is fulfilled if \(B \) has a unity. In this case the proof can be actually slightly simplified by avoiding involving powers of elements in \(B \). Further, every \(C^* \)-algebra \(B \) satisfies (b). Indeed, every element in \(B \) is a linear combination of positive elements, and for positive elements we can define rth roots.

Corollary 2.5. Let \(H \) be an infinite dimensional Hilbert space. Then
\[
\text{span } f(B(H)) = B(H) \quad \text{and} \quad \text{span } f(K(H)) = K(H)
\]
for every nonconstant polynomial \(f \in \mathcal{C}(\hat{X}) \).
Proof. It is well known that there does not exist a nonzero polynomial that was an identity of \(M_d(\mathbb{C}) \) for every \(d \geq 1 \), cf. [Row, Lemma 1.4.3]. Therefore there exists \(d \geq 1 \) such that \([f, X_{n+1}]\) is not an identity of \(M_d(\mathbb{C}) \). This means that \(f \) is neither an identity nor a central polynomial of \(M_d(\mathbb{C}) \). Since \(\mathcal{H} \) is infinite dimensional, we have \(\mathcal{B}(\mathcal{H}) \cong M_d(\mathcal{B}(\mathcal{H})) \cong M_d(\mathbb{C}) \otimes \mathcal{B}(\mathcal{H}) \), and similarly \(\mathcal{K}(\mathcal{H}) \cong M_d(\mathbb{C}) \otimes \mathcal{K}(\mathcal{H}) \).

Now we are in a position to use Theorem 2.4. Indeed, \(M_d(\mathbb{C}) \) is a simple algebra, and the algebras \(\mathcal{B}(\mathcal{H}) \) and \(\mathcal{K}(\mathcal{H}) \) satisfy (a) by [Hal] and [PT], and they satisfy (b) by the remark preceding the statement of the corollary.

References

